Revisión sistemática cualitativa]]> RESUMEN
El tratamiento de la Enfermedad Metastásica Cerebral única es paliativo y multimodal desconociéndose con certeza la modalidad o combinación terapéutica óptima. Se planteó como objetivo determinar las diferencias entre la Radioterapia Holocraneal, Radiocirugía, y Resección Quirúrgica en cuanto a la Sobrevida Global, Sobrevida Con Independencia Funcional, Control Local, Muerte Neurológica y Neurocognición en los pacientes con enfermedad metastásica cerebral única con tumor primario controlado. Se realizó un estudio retrospectivo del tipo revisión sistemática cualitativa. Se incluyeron Ensayos Clínicos Aleatorizados que compararon la Cirugía (con o sin Radioterapia Holocraneal), con la Radiocirugía (con o sin Radioterapia Holocraneal) en la Enfermedad Metastásica Cerebral Única independientemente de la localización del tumor primario. La búsqueda encontró inicialmente 971 artículos, de ellos 19 Ensayos Clínicos Aleatorizados. Al aplicar la herramienta de riesgo de sesgos de Cochrane se derivó una muestra de 14 Ensayos Clínicos que presentaron bajo riesgo de sesgos. La combinación de RQ y RTH ofreció mayor SG que la RTH sola. La combinación de RTH y RC ofreció un mejor CL que la RQ y RTH. La combinación de RTH Y RC ofreció un mejor CL y SG que la RTH sola. No se encontraron diferencias significativas entre la RTH y RC versus RC sola. Los resultados en cuanto a la neurocognición y SIF fueron inconsistentes. El tratamiento óptimo de los pacientes con EMC aún no está bien definido constituyendo aún un tema controvertido.

Palabras clave: Metástasis Cerebral; Metástasis Solitaria; Metástasis Única; Tratamiento Multimodal; Radiocirugía; Radioterapia Holocraneal; Resección Quirúrgica

ABSTRACT
The treatment of Isolated Cerebral Metastatic Disease is both multimodal and palliative. At present, the optimal treatment protocol is unknown. The objective of the present study was to determine outcome differences between Whole Brain Radiotherapy (WBRT), Radiosurgery (RS), and Surgical Resection (SR) or a combination of them, regarding Global Survival, Functional Independent Survival, Local Control, Neurological Death & Cognitive Status in patients with a unique cerebral metastasis and a controlled primary tumor. A retrospective study with a systematic qualitative literature review was performed. Randomized clinical trials comparing surgery (with or without whole brain radiotherapy), disregarding the localization of the primary tumor, were searched, resulting in 971 studies, only 19 of them being randomized. After applying Cochrane´s Risk of Bias Tool, only 14 studies showed a low risk of bias. The combination of SR & WBRT showed a longer survival, while WBRT & RS showed a better local control when compared with SR & WBRT. No statistical differences where found between WBRT & RS versus RS alone. Results regarding Cognitive Status & Functional Independent Survival were inconsistent. The optimal treatment in Isolated Metastatic Cerebral Disease still remains controversial.

Key words: Cerebral metastasis, Isolated Metastasis, Unique Metastasis, Multimodal treatment, Radiosurgery, Whole Brain Radioterapia, Surgical Resection.

]]>
BIBLIOGRAFÍA

  1. Tsao MN, Rades D, With A, Lo SS, Danielson BLl Laurie G et al. Radiotherapeutic and surgical management for newly diagnosed brain metastasis (es): An American Society for Radiation Oncology evidence-based guideline. Practical Radiation Oncology. 2012; 2 issue3: 210-225.
  2. Brown PD, Pugh S, Laack NN, Weffel JS, Khuntia D, Meyers C et al. Memantine for the prevention of cognitive dysfunction in patients receiving Whole-brain radiotherapy: a randomized, double-blind, placebo-controlled trial. Neuro Oncol 2013 Oct; 15(10): 1429-1437.
  3. RTOG-0933. A Phase II trial of hippocampal avoidance during whole brain radiotherapy for brain metastases. Ongoing Study.
  4. Kazda T, Jancalek R, Pospisil P, Sevela O, Prochazka T, Vrzal M et al. Why and how to spare the hippocampus during brain radiotherapy: the developing role of hippocampal avoidance in cranial radiotherapy. Radiation Oncology 2014; 9: 139.
  5. Kocher M, Soffietti R, Abacioglu U, Villa S, Fauchon F, Baumert BG et al. Adjuvant whole-brain radiotherapy versus observation after radiosurgery or surgical resection of one to three cerebral metastasis: Results of the EORTC 22952-26001 Sudy. J Clin Oncol 2011; 29: 134-41.
  6. Yoo H, Kim YZ, Nam BH, Shin SH,Yang HS,Lee JS et al. Reduced local recurrence of a single brain metastasis through microscopic total resection. J Neurosurg 2009; 110; 730-6.
  7. Jarvis LA, Simmons NE, Bellerive M, Erkmen K, Eskey CJ, Glastone DJ et al. Tumor bed dynamics after surgical resection of brain metastases implications for postoperative radiosurgery. Int J Radiat Oncol Biol Phys 2012; 84, 943-8.
]]>
BIBLIOGRAFÍA

  1. Blümcke I,Thom M, Aronica E, Armstrog DD, Vinters HV, et al. The clinicopathologic spectrum of focal cortical dysplasia: A consensus classification proposed by an ad hoc Task Force of the ILAE Diagnostic Method Commission. Epilepsia 2011; 52(1): 158 – 174.
  2. Benbadis SR, Wyllie E, Bingaman WE.Intracranial Electroecephalography and Localization Studies. In:Wyllie E (ed): The Treatment of Epilepsy. Philadelphia. Lippincott Williams and Wilkins. 2006; chapter 77; pp. 1059 – 1067.
  3. Engel J (Jr), Van Ness PC, Rasmussen TB, Ojeman LM: Outcome with respect to epileptic seizures. In: Engel J (Jr) (ed): Surgical Treatment of the Epilepsies. Raven Press. New York. 1993. Chapter 52 pp. 609 – 21d.
  4. González Martinez JA, Najm IM, Bingaman WE, Ruggieri P: Epilepsy Surgery in Focal Malformation of Cortical Development. In: Wyllie E (ed): The treatment of epilepsy. Lippincott Williams and Wilkins.2006; chapter 8, pp. 1103 – 1110.
  5. Hamer HM, Snake S. The epileptogenic lesion: general principles. In: Lüders HO (ed): Epilepsy Surgery. Informa Healthcare 2008. Chapter 81, pp. 711 – 715.
  6. Herrera EJ, Palacios C, Suárez JC, Pueyrredón FJ, Surur A, Theaux R, Perez Fonticiella S, Viano JC. Epilepsy Surgery in MRI Negative Patient. J Bras Neurocirurg 2012; 23(4): 328 – 331.
  7. Hetherington HP, Pan JW, Spencer DD. 1H and 31P spectroscopy and bioenergetics in the lateralization of seizures in temporal lobe epilepsy. J Magn Reson Imaging 2002; 16: 477 – 483.
  8. Knake S, Grant PE. Magnetic resonance imaging techniques in the evaluation for epilepsy surgery. In: Wyllie E (ed): The treatment of epilepsy. Principles and Practice. Philadelphia. Lippincott Williams and Wilkins. 2004.
  9. Lubienieck F, Sandrone S, Bartuluchi M, Pomata H, Taratuto A. Patología de las malformaciones del desarrollo cortical en pacientes con epilepsia refractaria. Experiencia en un Hospital Pediátrico. Rev. Argent. Neuroc 2010; 24: S83 – S92.
  10. Palacios C, Suárez JC, Nieto F, Herrera EJ, Pueyrredón FJ, Surur A, Theaux R, Ryan JM, Viano JC. Cirugía de epilepsia con electrocorticografía intraoperatoria. Rev Arg de Neurocirur 2014; 28(2): 63-67.
  11. Petre CA, Pomata HB. Cirugía en dos tiempos en epilepsia refractaria. Utilidad de los electrodos intracraneanos crónicos. Experiencia en población pediátrica y adulta. Rev Argnt Neurocirug 2004; 18: 51 – 56.
  12. Pomata HB, Bartuluchi M, Lubienieck F, Pociecha J, Caraballo R, Cáceres E, Vazquez C, Petre C, D´Giano C.: Malformación Del Desarrollo Cortical.Nuestra experiencia acerca de 150 casos. Rev.Argent. Neurocir. 2010; 24: S93 – S103.
  13. Pomata HB. Cirugía de la Epilepsia. Parte 1. Rev.Argent.Neuroc. 1999; 13: 39 – 45.
  14. Spencer S. The relative contributions of MIR, SPECT and PET imaging in epilepsy. Epilepsia 1994; 35 (suppl 6): S72 – S89.
  15. Suárez JC, Palacios C, Herrera EJ, Pueyrredón FJ, Surur A, Theaux R, Suárez MS, Ryan JM, Viano JC. Cirugía de epilepsia lesional en niños y adolescentes. Rev. Argent Neuroc 2012; 26, pp. 119 – 124.
  16. Suárez JC, Palacios C, Herrera EJ, Nieto F, Pueyrredón FJ, Surur A, Theaux R, Suárez MS, Ryan JM, Viano JC. Cirugía de la epilepsia lesional en adultos. Revista Neurotarget, 2013; vol 8 (1): 15 – 21.
  17. Thom M, Sisodiya S: Pathology of neocortical epilepsy. In: Lüders HO (ed): Epilepsy Surgery. Informa Healthcare 2008. Chapter 142, pp. 1338 - 1348.
]]>
RESUMEN
Objetivo: describir, paso a paso, la realización de un abordaje pterional (AP).
Descripción: Posición: El paciente es colocado en decúbito dorsal, con la cabeza rotada contralateral y deflexionada. Incisión: se extiende desde la línea media hasta el borde inferior del arco cigomático, 1 cm adelante del trago. Disección interfascial: tiene varios referentes anatómicos: la arteria temporal superficial, el reborde orbitario y al arco cigomático en su porción inferior. La incisión se inicia en la línea temporal superior, 2 cm posterior del reborde orbitario, y se extiende en dirección al sector medio del arco cigomático. Desinserción del músculo temporal: se procede a realizar un corte muscular hasta alcanzar el plano óseo, y se realiza una disección subperióstica. Craneotomía: la remoción ósea debe lograr una exposición suficiente de la fisura silviana, con mayor exposición del lóbulo frontal; así, deben exponerse los giros frontales medio e inferior y el giro temporal superior. Apertura dural: en dos colgajos, uno frontal y otro temporal.
Conclusión: el AP constituye aún hoy día una técnica actual y vigente, que se resiste a ser olvidada, cuya aplicación juiciosa permite acceso a un gran numero de patologías de la base de cráneo anterior y media.

Palabras clave: Abordaje Pterional; Base de Cráneo; Fisura Silviana; Microcirugía

ABSTRACT
Objective: the aim of this study is to describe, step by step, the pterional approach.
Description: position: the patient is placed supine, and the head rotated and also deflected. Incision: from the midline to de zygomatic arch, 1 cm in front of the tragus. Interfascial dissection: the landmarks: superficial temporal artery, orbital rim and zygomatic arch. The incision started at the level of the superior temporal line, 2 cm posterior to the orbital rim, and is pointed to the middle portion of the zygomatic arch. Temporal muscle displacement: after a transversal section of the upper portion of the muscle, it is detached in a subperiosteal fashion. Craniotomy: the osseous removal should expose the sylvian fissure and the middle and inferior frontal gyrus and also the superior temporal giri. Dural opening: in two flaps (frontal and temporal).
Conclusion: the pterional approach is still, nowadays, a valid and current technique. This approach allows treating many lesions located in the anterior and middle cranial fossa.

Keywords: Microsurgery; Pterional Approach; Skull Base; Sylvian Fissure

]]>
BIBLIOGRAFÍA

  1. Altay T, Couldwell WT: The frontotemporal (pterional) approach: an historical perspective. Neurosurgery 2012; 71:481-92.
  2. Campero A, Socolovsky M, Martins C, Yasuda A, Torino R, Rhoton AL: Facial-zygomatic triangle: a relationship between the extracranial portion of facial nerve and the zygomatic arch. Acta Neurochir (Wien) 2008; 150:273-8.
  3. Campero A, Martins C, Socolovsky M, Torino R, Yasuda A, Domitrovic L, Rhoton AJr: Three-piece orbitozygomatic approach. Neurosurgery 2010; 66(3 Suppl Operative):E119-20.
  4. Campero A, Campero AA, Socolovsky M, Martins C, Yasuda A, Basso A, Rhoton A: The transzygomatic approach. J Clin Neurosc 2010; 17:14233.
  5. Campero A, Ajler P, Emmerich J: Abordaje Pterional. En: Campero A, Ajler P, Emmerich J, editores. Abordajes neuroquirurgicos al cerebro y la base del cráneo. Primera Edición, Buenos Aires, Ediciones Journal, 2013; pp
  6. Chaddad Neto F, Carvalhal Ribas G, de Oliveira E: A craniotomia pterional, descriçao passo a passo. Arq Neuropsiquiatr 2007; 65:101-6.
  7. Coscarella E, Vishteh AG, Spetzler RF, Seoane E, Zabramski JM: Subfascial and submuscular methods of temporal muscle dissection and their relationship to the frontal branch of the facial nerve, J Neurosurg 2000; 92:877-80.
  8. Kadri PA, Al-Mefty O: The anatomical basis for surgical preservation of temporal muscle, J Neurosurg 2004; 100:517-22.
  9. Yasargil MG, Fox JL, Ray MW: The operative approach to aneurysms of the anterior communicating artery. En: Krayenbül H editores. Advances and technical standards in neurosurgery. Springer-Verlag, 1975; pp 114-70.
]]>
Premio AANC para Global Spine]]> RESUMEN
Objetivo: Realizar osteotomías cervicales en preparados cadavéricos, siguiendo la clasificación moderna de 7 grados según Ames y colaboradores, tomando fotos 3D para poner en evidencia la magnitud de resección ósea de cada uno de los subtipos.
Material y Métodos: Se utilizaron dos preparados cadavéricos formolizados con inyección vascular, realizándose imágenes fotográficas en 3 dimensiones de los mismos. Las fotografías fueron tomadas con una camara Nikon D90, con lente 50 mm Af 1.8G, flash Nikon SB700, y una barra regulable para fotografía. Se realizó sobre las preparaciones cadavéricas la disección cervical con incisión en línea media posterior y abordaje por vía anterior segun Smith y Robinson. Se efectuó la exposición muscular y esquelitización ósea con exposición de láminas, apófisis espinosas, facetas articulares, ligamentos, discos, apófisis unciformes y cuerpos vertebrales. Mediante la utilización de un drill neumático de alta velocidad se realizaron 8 osteotomías, 4 por vía posterior y 4 por vía anterior.
Resultados: Las osteotomías realizadas por vía anterior fueron la discectomía anterior completa (denominada osteotomía grado I anterior), la corpectomía parcial o total incluyendo discectomía superior e inferior (denominada osteotomía grado III), la resección completa de la unión uncovertebral o articulación de Luschka (denominada osteotomía grado IV) y la resección vertebral completa o espondilectomía (denominada osteotomía grado VII). Por vía posterior, se realizaron la facetectomía parcial (denominada osteotomía grado I posterior), la facetectomía total u osteotomía de Ponte (denominada osteotomía grado II), la osteotomía de apertura angular (denominada osteotomía grado V) y la osteotomía de cierre angular o de sustracción pedicular (denominada osteotomía grado VI). Las imágenes fotográficas obtenidas fueron procesadas con los siguientes softwares con técnica anaglífica: Anaglyph Maker versión 1.08 y StereoPhoto Maker versión 4.54.
Discusión: Las osteotomías vertebrales constituyen gestos quirúrgicos útiles para la corrección de las deformidades espinales cervicales. A pesar de las distintas variantes técnicas de las mismas, no existía hasta hace poco un sistema que permitiera su nomenclatura y clasificación. Ames y colaboradores proponen en 2013 una nomenclatura para este tipo de maniobras, clasificándolas en 7 grupos con distintos. El aporte de la anatomía en 3D permitió mejorar la compresión del grado de resección ósea necesario para cada tipo de osteotomía, y visualizar las estructuras nerviosas y vasculares en riesgo en cada tipo de abordaje.

Palabras Claves: Osteotomías Cervicales; Osteotomía De Ponte; Osteotomía 3D; Deformidad Cervical

ABSTRACT
Objective: To perform cervical osteotomies in cadaveric specimens, following the new classification of Ames et al. 3D pictures were taken to show the amount of bone resection on each subtype.
Material & methods: Using two formolized cadaveric specimens with vascular injection, we took 3D pictures of osteotomies following the Ames et al classification of cervical osteotomies. The pictures were taken with a Nikon D90 camera, with a 50 mm lens Af 1.8G, Nikon SB700 flash, and an adjustable titanium frame designed to take 3D pictures. Anterior cadaveric dissections were made based on the Smith & Robinson technique. We also performed a posterior approach to expose laminar surfaces, spinous processes, facets complexes, ligaments, discs, uncovertebral joints and vertebral bodies. With the aid of a pneumatic drill, 8 osteotomies (4 anterior and 4 posterior) were progressively made and pictured.
Results: The anterior osteotomies were: discectomy, corpectomy, discectomy with uncovertebral resection and spondilectomy. Posterior osteotomies were: partial facetectomy, complete facetectomy (Ponte), open wedge osteotomy and closing wedge osteotomy (pedicle substraction). Pictures were processed and fused with Anaglyph Maker 1.08 and StereoPhoto Maker 4.54.
Conclusions: Cervical osteotomies are useful surgical maneuvers to correct spinal deformities. 3D anatomy helps to understand the degree of bone resection needed to make each osteotomy, exposing nervous and vascular structures at risk in these procedures.

Key Words: Cervical Osteotomies; Ponte Osteotomy; 3D Osteotomies; Cervical Deformities

]]>
BIBLIOGRAFÍA

  1. Abumi K, Shono Y, Taneichi H, Ito M, Kaneda K: Correction of cervical kyphosis using pedicle screw fixation systems. Spine (Phila Pa 1976) 24:2389-2396, 1999.
  2. Ames CP, Blondel B, Scheer JK, Schwab FJ, Le Huec JC, Massicotte EM, et al: Cervical radiographical alignment: comprehensive assessment techniques and potential importance in cervical myelopathy. Spine (Phila Pa 1976) 38:S149-160, 2013.
  3. Ames CP, Smith JS, Scheer JK, Shaffrey CI, Lafage V, Deviren V, et al: A standardized nomenclature for cervical spine soft-tissue release and osteotomy for deformity correction: clinical article. J Neurosurg Spine 19:269-278, 2013.
  4. Kim HJ, Piyaskulkaew C, Riew KD: Anterior cervical osteotomy for fixed cervical deformities. Spine (Phila Pa 1976) 39:1751-1757, 2014.
  5. O'Shaughnessy BA, Liu JC, Hsieh PC, Koski TR, Ganju A, Ondra SL: Surgical treatment of fixed cervical kyphosis with myelopathy. Spine (Phila Pa 1976) 33:771-778, 2008.
  6. Robinson R, Smith G: Anterolateral cervical disc removal and interbody fusion for cervical disc syndrome. Bull Johns Hopkins Hosp 96:223-224, 1955.
  7. Samudrala S, Vaynman S, Thiayananthan T, Ghostine S, Bergey DL, Anand N, et al: Cervicothoracic junction kyphosis: surgical reconstruction with pedicle subtraction osteotomy and Smith-Petersen osteotomy. Presented at the 2009 Joint Spine Section Meeting. Clinical article. J Neurosurg Spine 13:695-706, 2010.
  8. Scheer JK, Tang JA, Smith JS, Acosta FL, Jr., Protopsaltis TS, Blondel B, et al: Cervical spine alignment, sagittal deformity, and clinical implications: a review. J Neurosurg Spine 19:141-159, 2013.
  9. Simmons ED, DiStefano RJ, Zheng Y, Simmons EH: Thirty-six years experience of cervical extension osteotomy in ankylosing spondylitis: techniques and outcomes. Spine (Phila Pa 1976) 31:3006-3012, 2006.
  10. Tang JA, Scheer JK, Smith JS, Deviren V, Bess S, Hart RA, et al: The impact of standing regional cervical sagittal alignment on outcomes in posterior cervical fusion surgery. Neurosurgery 71:662-669; discussion 669, 2012.
  11. Wollowick AL, Kelly MP, Riew KD: Pedicle subtraction osteotomy in the cervical spine. Spine (Phila Pa 1976) 37:E342-348, 2012.
  12. Zdeblick TA, Bohlman HH: Cervical kyphosis and myelopathy. Treatment by anterior corpectomy and strut-grafting. J Bone Joint Surg Am 71:170-182, 1989.
]]>
Premio Póster Neuropinamar 2015]]> Premio Video Neuropinamar 2015]]> RESUMEN
Objetivo: Descripción de la resolución quirúrgica de un aneurisma complejo, gigante de circuito posterior (arteria cerebelosa posteroinferior), embolizado previamente, y la evolución postoperatoria.
Descripción: Paciente de 48 años de edad con antecedentes de hidrocefalia obstructiva, e hipertensión de fosa posterior, la cual fue tratada por vía endovascular hace 4 años, con colocación de derivación ventricular, y craniectomía descompresiva de fosa posterior, con evolución progresiva de déficit de pares craneales bajos, y síndrome de hipertensión endocraneana.
Intervención: Se realizó abordaje extremo lateral con drilado parcial del cóndilo occipital, control proximal de la arteria vertebral, y reconstrucción de la pared aneurismática del sector arteria vertebral- arteria cerebelosa posteroinferior (PICA), mediante microcirugía, con posterior apertura del saco dural y remoción de coils y trombosis intraaneurismática, removiendo el efecto de masa aneurismático.
Conclusión: El tratamiento microquirúrgico con la técnica de la reconstrucción parietal del aneurisma y el control proximal del mismo, en conjunto con abordajes de base de cráneo permiten el definitivo y adecuado tratamiento para los aneurismas gigantes de la pica.

Palabras Claves: Aneurisma Cerebral; Aneurisma PICA; Abordaje Extremo Lateral; Circuito Posterior; Tratamiento Neuroquirúrgico

ABSTRACT
Objective: To describe the surgical treatment for complex, giant, embolized, PICA aneurysm and the follow up.
Description: 48 years old, female patient with clinical history of obstructive hydrocephalus and posterior fossa´s hipertension. The treatment was endovascular surgery with coils and venricular shunt with posterior fossa´s deccompresive surgery 4 years ago. The clinical evolution was poor. Due to low cranial nerves déficit and progressive posterior fossa´s hipertension, we performed microsurgical treatment
Intervention: We performed extreme lateral approach with partial drilling of occipital condile, wiht proper proximal vascular vertebral control, and vascular parietal artery reconstruction in the vertebral-posterior inferior cerebellar artery (PICA) aneurysmatic segment,with microsurgery, posterior opening of the dome and coils remotion.
Conclusion: Microsurgical treatment with reconstruction parietal technique, proximal vascular control and skull base approaches are the definitive and more adecuated treatment for giant PICA aneurysms.

Key Words: Cerebral Aneurysm; Pica Aneurysm; Extreme Lateral Approach; Posterior Circulation; Neurosurgical Treatment


]]>
BIBLIOGRAFÍA

  1. Abdulrauf S.I. EC-IC bypass for giant aneurysms. En Abdulrauf S.I., ed. Cerebral revascularization. Philadelphia. Elsevier Saunders, 2011: 231-245.
  2. Ausman JI, Diaz FG, Sadasivan B, Gonzeles-Portillo M Jr, Malik GM, Deopujari CE. Giant intracranial aneurysm surgery: the role of microvascular reconstruction. Surg Neurol. 1990;34(1):8-15.
  3. Hosobuchi Y. Giant intracranial aneurysms. En: Wilkins RH, Rengachary SS, eds. Neurosurgery. New York, NY: McGraw-Hill; 1985:1404-1414.
  4. Kodama N, Suzuki J. Surgical treatment of giant aneurysms. Neurosurg Rev. 1982; 5(4):155-160.
  5. Lawton MT, Spetzler RF. Surgical management of giant intracranial aneurysms: experience with 171 patients. Clin Neurosurg. 1995;42:245-266.
  6. Ljunggren B, Brandt L, Sundbarg G, Saveland H, Cronqvist S, Stridbeck H. Early management of aneurysmal subarachnoid hemorrhage. Neurosurgery. 1982;11(3): 412-418.
  7. Lozier AP, Kim GH, Sciacca RR, et al. Microsurgical treatment of basilar apex aneurysms: perioperative and long-term clinical outcome. Neurosurgery 2004;54:286–96.
  8. Ogilvy CS, Carter BS. Stratification of outcome for surgically treated unruptured intracranial aneurysms. Neurosurgery 2003;52:82–87.
  9. Parkinson R, Eddleman C, Batjer H, Bendok B. Giant cranial aneurysms: endovascular challenges. Neurosurgery 2006 59: s3103-112.
  10. Peerless S, Wallace M, Drake C. Giant intracranial aneurysms. En: Youmans JR, ed. Neurological Surgery: A Comprehensive Reference Guide to the Diagnosis and Management of Neurological Problems. 3 ed. Philadelphia, PA:WB Saunders; 1990: 1764-1806.
  11. Rivas J.; Domínguez J.; Bravo P.; Pérez J., Avila A. Aneurisma disecante de la arteria cerebelosa posteroinferior. Neurocirugía 2007; 18: 232-237.
  12. Sullivan BJ, Sekhar LN, Duong DH, et al. Profound hypothermia and circulatory arrest with skull base approaches for treatment of complex posterior circulation aneurysms. Acta Neurochir (Wien) 1999;141:1–11.
  13. Sundt TM. Results of surgical management. En: Sundt TM Jr, ed. Surgical Techniques for Saccular and Giant Intracranial Aneurysms. Baltimore, MD: Williams and Wilkins; 1990:19-23.
  14. Symon L, Vajda J. Surgical experiences with giant intracranial aneurysms. J Neurosurg. 1984;61(6):1009-1028.
  15. Yasargil M. Giant intracranial aneurysms. En: Yasargil MG, ed. Microneurosurgery, Volume 2: Clinical Considerations: Surgery of the Intracranial Aneurysms and Results. New York, NY: Thieme-Stratton; 1984:296-304.
]]>
Trabajo Premio Junior Neuropinamar 2015]]> RESUMEN
Objetivo: Analizar en forma prospectiva la viabilidad de una neurorrafia mediante técnicas microquirúrgicas, en un modelo experimental con diferentes grados crecientes de pérdida de tejido nervioso periférico.
Introducción: Para reparar un nervio periférico que tiene pérdida de tejido, clásicamente este defecto se suple por un injerto autólogo. Sin embargo, se produce comorbilidad en el sitio dador y sus resultados siempre son inferiores a la sutura directa sin tensión. Existe una opción para evitar el uso de injertos cuando el defecto es escaso, colocando puntos epineurales distales (PED) a la neurorrafia, eliminando así la tensión en dicha unión.
Materiales y métodos: Se utilizaron 40 ratas Wistar, dividiéndose aleatoriamente en 4 grupos. Bajo anestesia general se abordó al nervio ciático y se efectuó sección trasversal y sutura simple con nylon 10.0 al grupo A (control). Se realizó exéresis de 2 mm de nervio al grupo B, de 4 mm al grupo C y de 6 mm al grupo D; para luego realizar PED. Se realizaron determinaciones de índice de función ciático (análisis de las huellas), velocidad de conducción (electrofisiología) e índice de regeneración (histopatología) para evaluar la viabilidad de la neurorrafia. Se confrontaron los diferentes grupos planteados con ANOVA, considerando significativo un valor de p < 0.05.
Conclusiones:La neurorrafia simple no evidencia diferencias estadísticamente significativas con la reparación de 2mm de pérdida de tejido mediante PED en la rata Wistar.

Palabras Claves: Neurorrafia con Tensión; Experimentación en Sistema Nervioso Periférico; Puntos Epineurales Distales; Injertos Nerviosos

ABSTRACT
Objective: To analyze, in a prospective way, the viability of a neurorraphy by a microsurgical technique, in an experimental model with different increasing grades of peripheral nerve tissue loss.
Introduction: In order to repair a peripheral nerve that has experienced some grade of substance loss, autologous grafts have been used by most neurosurgeons. However, comorbidities in the donor site are produced, and the results obtained are always inferior compared to the ones achieved by using a direct suture without tension. There is an option to avoid using grafts when the defect is scarce, which is the confection of distal epineural sutures (DES) to the neurorraphy, discarding any tension in this junction site.
Materials and methods: We have used 40 Wistar rats, randomly separated into 4 groups. In ‘Group A’, under complete anesthesia, the sciatic nerve was dissected and transversely sectioned and then sutured with a 10.0 nylon suture. Furthermore we made a 2 mm extirpation in ‘Group B’, a 4 mm one in ‘Group C’ and a 6 mm one in ‘Group C’, in order to perform a DES technique. Our group also ran a sciatic nerve function test (footprint analysis), conduction speed (by electrophysiology), and even determined the nerve regeneration index (histopathology) to estimate the viability of the neurorraphy. The different groups were confronted with ANOVA, considering a value of p<0.05 as statistically significative.
Conclusions: Simple neurorraphy exposed no statistically significative differences in comparison to the reparation of a 2 mm tissue loss with DES technique, in the Wistar rat model.

Key Words: Tension Neurorraphy; Peripheral Nervous System Experimentation; Distal Epineural Sutures; Nervous Grafts

]]>
BIBLIOGRAFÍA

  1. Robinson LR. Traumatic injury to peripheral nerves. Muscle Nerve. 2000;23(6):863–73.
  2. Chimutengwende-Gordon M, Khan W. Recent advances and developments in neural repair and regeneration for hand surgery. Open Orthop J. 2012;6:103–7.
  3. Thorsén F, Rosberg H-E, Steen Carlsson K, Dahlin LB. Digital nerve injuries: Epidemiology, results, costs, and impact on daily life. Journal of Plastic Surgery and Hand Surgery. 2012. p. 184–90.
  4. Dahlin LB. Techniques of peripheral nerve repair. Scand J Surg. 2008;97(4):310–6.
  5. Eser F, Aktekin LA, Bodur H, Atan C. Etiological factors of traumatic peripheral nerve injuries. Neurol India. 2009;57(4):434–7.
  6. Flores LP. The importance of the preoperative clinical parameters and the intraoperative electrophysiological monitoring in brachial plexus surgery. Arq Neuropsiquiatr. 2011;69(4):654–9.
  7. Siqueira MG, Martins RS. Surgical treatment of adult traumatic brachial plexus injuries: an overview. Arq Neuropsiquiatr. 2011;69(3):528–35.
  8. Bustamante J, Socolovsky M, Emmerich J, Pennini MG, Lausada N, Domitrovic L, et al. Efectos de la eliminación de la tensión mediante puntos epineurales: estudio comparativo empleando diferentes técnicas de sutura en un modelo animal. Rev Arg Neuroc. 2009;23:71–6.
  9. Bustamante J, Socolovsky M, Martins RS, Emmerich J, Pennini MG, Lausada N, et al. Effects of eliminating tension by means of epineural stitches: a comparative electrophysiological and histomorphometrical study using different suture techniques in an animal model. Arq Neuropsiquiatr. 2011;69(2B):365–70.
  10. Schmidhammer R, Zandieh S, Hopf R, Mizner I, Pelinka L, Kroepfl A, et al. Alleviated tension at the repair site enhances functional regeneration: the effect of full range of motion mobilization on the regeneration of peripheral nerves--histologic, electrophysiologic, and functional results in a rat model. J Trauma. 2004;56(3):571–84.
  11. Radtke C, Vogt PM. Peripheral nerve regeneration: a current perspective. Eplasty. 2009;9:e47.
  12. Bochdansky T, Hertz H, Poigenfürst J. Effects of flexed position of the wrist joint after flexor tendon sutures on the median nerve. Unfallchirurgie. 1993;19(5):303–6.
  13. Zlowodzki M, Chan S, Bhandari M, Kalliainen L, Schubert W. Anterior transposition compared with simple decompression for treatment of cubital tunnel syndrome. A meta-analysis of randomized, controlled trials. J Bone Joint Surg Am. 2007;89(12):2591–8.
  14. Danoff JR, Lombardi JM, Rosenwasser MP. Use of a pedicled adipose flap as a sling for anterior subcutaneous transposition of the ulnar nerve. J Hand Surg Am. 2014;39(3):552–5.
  15. Zimmerman RM, Jupiter JB, González Del Pino J. Minimum 6-year follow-up after ulnar nerve decompression and submuscular transposition for primary entrapment. J Hand Surg Am. 2013;38(12):2398–404.
  16. Bourrel P. Technique of nerve suture. Med Trop. 42(2):221–2.
  17. Millesi H. The nerve gap. Theory and clinical practice. Hand Clin. 1986;2(4):651–63.
  18. Stevens WG, Hall JD, Young VL, Weeks PM. When should nerve gaps be grafted? An experimental study in rats. Plast Reconstr Surg. 1985;75(5):707–13.
  19. Saleh M, Mafi P, Hindocha S, Dhital M. Advances of peripheral nerve repair techniques to improve hand function: a systematic review of literature. Open Orthop J. 2012;6:60–8.
  20. Oktay MF, Askar I, Yildirim A, Gurlek A, Akkus M, Topcu I, et al. Effects of antineoplastic agents on the peripheral nerves under a surgical tissue expansion procedure: An experimental study. Microsurgery. 2006;26(6):473–9.
  21. Arnaoutoglou CM, Sakellariou A, Vekris M, Mitsionis GI, Korompilias A, Ioakim E, et al. Maximum intraoperative elongation of the rat sciatic nerve with tissue expander: Functional, neurophysiological, and histological assessment. Microsurgery. 2006;26(4):253–61.
  22. Kechele PR, Bertelli JA, Dalmarco EM, Frode TS. The mesh repair: tension free alternative on dealing with nerve gaps-experimental results. Microsurgery [Internet]. 2011;31(7):551–8.
  23. Belkas JS, Shoichet MS, Midha R. Peripheral nerve regeneration through guidance tubes. Neurol Res. 2004;26(2):151–60.
  24. De Ruiter GCW, Malessy MJA, Yaszemski MJ, Windebank AJ, Spinner RJ. Designing ideal conduits for peripheral nerve repair. Neurosurg Focus. 2009;26(2):E5.
  25. Meek MF, Coert JH. US Food and Drug Administration /Conformit Europe- approved absorbable nerve conduits for clinical repair of peripheral and cranial nerves. Ann Plast Surg. 2008;60(4):466–72.
  26. Hobson MI. Increased vascularisation enhances axonal regeneration within an acellular nerve conduit. Ann R Coll Surg Engl. 2002;84(1):47–53.
  27. Janjua RM, Fernandez J, Tender G, Kline DG. Submuscular transposition of the ulnar nerve for the treatment of cubital tunnel syndrome. Neurosurgery. 2008;63(4 SUPPL.).
  28. Charles YP, Coulet B, Rouzaud JC, Daures JP, Chammas M. Comparative Clinical Outcomes of Submuscular and Subcutaneous Transposition of the Ulnar Nerve for Cubital Tunnel Syndrome. J Hand Surg Am. 2009;34(5):866–74.
  29. Jiang B, Shibata M, Matsuzaki H, Takahashi HE. Proximal nerve elongation vs. nerve grafting in repairing segmental nerve defects in rabbits. Microsurgery. 2004;24(3):213–7.
  30. Friedman AH. An eclectic review of the history of peripheral nerve surgery. Neurosurgery. 2009;65(4 Suppl):A3–A8.
  31. Powers CJ, Friedman AH. A brief history of surgery for peripheral nerve sheath tumors. Neurosurg Focus. 2007;22(6):E1.
  32. Battiston B, Papalia I, Tos P, Geuna S. Chapter 1: Peripheral nerve repair and regeneration research: a historical note. Int Rev Neurobiol. 2009;87:1–7.
  33. Socolovsky M, Bortz J. Historia de la cirugía de los nervios periféricos, con especial interés en la influencia que tuvieron en ella los conflictos armados. Revi Argent Neuroc. 2005;19(4):237–42.
  34. Seddon H. Three types of nerve injury. Brain. 1943;66(4):237–88.
  35. Seddon H. A classification of nerve injuries. Br Med J. 2(4260):237–9.
  36. Socolovsky M. Estudio anatómico y microquirúrgico del abordaje transmuscular a la porción proximal del nervio ciático mayor. 2010. p. 7–10.
  37. Burnett MG, Zager EL. Pathophysiology of peripheral nerve injury: a brief review. Neurosurg Focus. 2004;16(5):E1.
  38. Wang S, Yaszemski MJ, Knight AM, Gruetzmacher JA, Windebank AJ, Lu L. Photo-crosslinked poly(epsilon-caprolactone fumarate) networks for guided peripheral nerve regeneration: material properties and preliminary biological evaluations. Acta Biomater. 2009;5(5):1531–42.
  39. Geuna S, Nicolino S, Raimondo S, Gambarotta G, Battiston B, Tos P, et al. Nerve regeneration along bioengineered scaffolds. Microsurgery. 2007;27(5):429–38.
  40. Amado S, Rodrigues JM, Luís AL, Armada-da-Silva PAS, Vieira M, Gartner A, et al. Effects of collagen membranes enriched with in vitro-differentiated N1E-115 cells on rat sciatic nerve regeneration after end-to-end repair. J Neuroeng Rehabil. 2010;7:7.
  41. Bain J, Mackinnon S HD. Functional evaluation of complete sciatic, peroneal, and posterior tibial nerve lesions in the rat. Plast Reconstr Surg. 1989;83(1):129–38.
  42. Flores AJ, Lavernia CJ, Owens PW. Anatomy and physiology of peripheral nerve injury and repair. Am J Orthop. 2000;29(3):167–73.
  43. Geneser F. Histología. 2da ed. Panamericana EM, editor. 1990.
  44. Asato F, Butler M, Blomberg H, Gordh T. Variation in rat sciatic nerve anatomy: implications for a rat model of neuropathic pain. J Peripher Nerv Syst. 2000;5(1):19–21.
  45. Kovacic U, Bajrovid F, Sketelj J. Recovery of cutaneous pain sensitivity after end-to-side nerve repair in the rat. J Neurosurg. 1999;91(5):857–62.
  46. Bélanger E, Henry FP, Vallée R, Randolph MA, Kochevar IE, Winograd JM, et al. In vivo evaluation of demyelination and remyelination in a nerve crush injury model. Biomedical Optics Express. 2011. p. 2698.
  47. Chlebicki CA, Lee AD, Jung W, Li H, Liaw L-H, Chen Z, et al. Preliminary investigation on use of high-resolution optical coherence tomography to monitor injury and repair in the rat sciatic nerve. Lasers Surg Med. 2010;42(4):306–12.
  48. Menovsky T, Beek JF. Laser, fibrin glue, or suture repair of peripheral nerves: a comparative functional, histological, and morphometric study in the rat sciatic nerve. J Neurosurg. 2001;95(4):694–9.
  49. Spinner RJ, Poliakoff MB, Tiel RL. The origin of “Saturday night palsy”? Neurosurgery. 2002;51(3):737–741; discussion 741.
  50. Fernandez E, Pallini R, Talamonti G. Sleep palsy (Saturday-night palsy) of the deep radial nerve. Case report. Journal of neurosurgery. 1987. p. 460–1.
  51. Sunderland S. A classification of peripheral nerve injuries producing loss of function. Brain. 1951;74(4):491–516.
  52. Robla-Costales J, Socolovsky M, Masi G Di, Domitrovic L, Campero A, Fernández-Fernández J, et al. Técnicas de reconstrucción nerviosa en cirugía del plexo braquial traumatizado Parte 1: Transferencias nerviosas extraplexuales. 2011;507–20.
  53. Robla-Costales J, Socolovsky M, Masi G Di, Domitrovic L, Campero A, Fernández-Fernández J, et al. Técnicas de reconstrucción nerviosa en cirugía del plexo braquial traumatizado Parte 2 : Transferencias nerviosas intraplexuales. 2011;521–34.
  54. McLean J, Batt J, Doering LC, Rotin D, Bain JR. Enhanced rate of nerve regeneration and directional errors after sciatic nerve injury in receptor protein tyrosine phosphatase sigma knock-out mice. J Neurosci. 2002;22(13):5481–91.
  55. Borin A, Toledo RN, Lee P, Ricardo J, Testa G, Laércio O. facial nerve regeneration in rats. 2008;74(April 2007):675–83.
  56. Liu G-B, Cheng Y-X, Feng Y-K, Pang C-J, Li Q, Wang Y, et al. Adipose-derived stem cells promote peripheral nerve repair. Arch Med Sci [Internet]. 2011 Aug [cited 2014 Apr 29];7(4):592–6.
  57. Martins RS, Siqueira MG, Silva CF da, Godoy BO de, Plese JPP. Electrophysiologic assessment of regeneration in rat sciatic nerve repair using suture, fibrin glue or a combination of both techniques. Arq Neuropsiquiatr. 2005;63(3A):601–4.
  58. Knox CJ, Hohman MH, Kleiss IJ, Weinberg JS, Heaton JT, Hadlock TA. Facial nerve repair: fibrin adhesive coaptation versus epineurial suture repair in a rodent model. Laryngoscope. 2013;123(7):1618–21.
  59. Nunes e Silva D, Silva ACMBA, Aydos RD, Viterbo F, Pontes ERJC, Odashiro DN, et al. Nerve growth factor with fibrin glue in end-to-side nerve repair in rats. Acta Cirurgica Brasileira. 2012. p. 325–32.
  60. Silva DN e, Coelho J, Frazílio F de O, Odashiro AN, Carvalho P de TC de, Pontes ERJC, et al. End-to-side nerve repair using fibrin glue in rats. Acta Cir Bras. 2010;25(2):158–62.
  61. Lauto A, Foster LJ, Avolio A, Sampson D, Raston C, Sarris M, et al. Sutureless nerve repair with laser-activated chitosan adhesive: a pilot in vivo study. Photomed Laser Surg. 2008;26(3):227–34.
  62. Maeda T, Hori S, Sasaki S, Maruo S. Effects of tension at the site of coaptation on recovery of sciatic nerve function after neurorrhaphy: evaluation by walking-track measurement, electrophysiology, histomorphometry, and electron probe X-ray microanalysis. Microsurgery. 1999;19(4):200–7.
  63. Arnaoutoglou CM, Sakellariou A, Vekris M, Mitsionis GI, Korompilias A, Ioakim E, et al. Maximum intraoperative elongation of the rat sciatic nerve with tissue expander: functional, neurophysiological, and histological assessment. Microsurgery. 2006;26(4):253–61.
  64. Scherman P, Kanje M, Dahlin LB. Bridging short nerve defects by direct repair under tension, nerve grafts or longitudinal sutures. Restor Neurol Neurosci. 2004;22(2):65–72.
  65. National Research Council. Guide for the Care and Use of Laboratory Animals. Laboratory Animals. 1996.
  66. Tschan CA, Keiner D, Müller HD, Schwabe K, Gaab MR, Krauss JK, et al. Waterjet dissection of peripheral nerves: an experimental study of the sciatic nerve of rats. Neurosurgery. 2010;67(2 Suppl Operative):368–76.
  67. Oliveira EF, Mazzer N, Barbieri CH, Selli M. Correlation between functional index and morphometry to evaluate recovery of the rat sciatic nerve following crush injury: experimental study. J Reconstr Microsurg. 2001;17(1):69–75.
  68. Sun W, Sun C, Zhao H, Lin H, Han Q, Wang J, et al. Improvement of sciatic nerve regeneration using laminin-binding human NGF-beta. PLoS One. 2009;4(7):e6180.
  69. Christensen D, Idänpään-Heikkilä JJ, Guilbaud G, Kayser V. The antinociceptive effect of combined systemic administration of morphine and the glycine/NMDA receptor antagonist, (+)-HA966 in a rat model of peripheral neuropathy. Br J Pharmacol. 1998;125(8):1641–50.
  70. Vrinten DH, Gispen WH, Groen GJ, Adan RA. Antagonism of the melanocortin system reduces cold and mechanical allodynia in mononeuropathic rats. J Neurosci. 2000;20(21):8131–7.
  71. Martins RS, Siqueira MG, da Silva CF, Plese JPP. Correlation between parameters of electrophysiological, histomorphometric and sciatic functional index evaluations after rat sciatic nerve repair. Arq Neuropsiquiatr. 2006;64(3B):750–6.
  72. Dellon AL, Mackinnon SE. Sciatic nerve regeneration in the rat. Validity of walking track assessment in the presence of chronic contractures. Microsurgery. 1989;10(3):220–5.
  73. Terzis J, Faibisoff B, Williams B. The nerve gap: suture under tension vs. graft. Plast Reconstr Surg. 1975;56(2):166–70.
  74. Brown CJ, Evans PJ, Mackinnon SE, Bain JR, Makino AP, Hunter DA, et al. Inter- and intraobserver reliability of walking-track analysis used to assess sciatic nerve function in rats. Microsurgery. 1991;12(2):76–9.
  75. De Medinaceli L, William F, Wtatt R. An index of the functional condition of rat sciatic nerve based on measurements made from walking tracks. Exp Neurol. 1982;77:634–43.
  76. Chakravarthy Marx S, Kumar P, Dhalapathy S, Prasad K, Marx CA. Microanatomical and immunohistochemical study of the human lateral antebrachial cutaneous nerve of forearm at the antecubital fossa and its clinical implications. Clin Anat. 2010;23(6):693–701.
  77. Ma X, Yang Z, Li X, Ma J, Zhang Y, Guo H, et al. [A study on biomechanical properties of chemically extracted acellular peripheral nerve]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2010;24(11):1293–7.
  78. Whitlock EL, Myckatyn TM, Tong AY, Yee A, Yan Y, Magill CK, et al. Dynamic quantification of host Schwann cell migration into peripheral nerve allografts. Exp Neurol. 2010;225(2):310–9.
  79. Kim Y tae, Haftel VK, Kumar S, Bellamkonda R V. The role of aligned polymer fiber-based constructs in the bridging of long peripheral nerve gaps. Biomaterials. 2008;29(21):3117–27.
  80. Kaplan S, Geuna S, Ronchi G, Ulkay MB, von Bartheld CS. Calibration of the stereological estimation of the number of myelinated axons in the rat sciatic nerve: A multicenter study. J Neurosci Methods. 2010;187(1):90–9.
  81. Weber RA, Proctor WH, Warner MR, Verheyden CN. Autotomy and the sciatic functional index. Microsurgery. 1993;14(5):323–7.
  82. Martins R. Avaliação da eficácia do reparo na regeneração do nervo ciático do rato com utilização de sutura, adesivo de fibrina ou combinação das duas técnicas. Universidade de São Paulo; 2004. p. 87–8.
  83. Millesi H, Meissl G, Berger A. Further experience with interfascicular grafting of the median, ulnar, and radial nerves. J Bone Joint Surg Am. 1976;58(2):209–18.
  84. Berger A, Millesi H. Nerve grafting. Clin Orthop Relat Res. 1978;(133):49–55.
  85. Capek L, Clarke HM. Endoscopically assisted sural nerve harvest in infants. Semin Plast Surg. 2008;22(1):25–8.
  86. Van Ouwerkerk WJ. Endoscopy-assisted sural nerve harvest in infants. Childs Nerv Syst. 1999;15(4):192–195; discussion 196.
  87. Hattori Y, Doi K, Ikeda K, Pagsaligan JM. Vascularized ulnar nerve graft for reconstruction of a large defect of the median or radial nerves after severe trauma of the upper extremity. J Hand Surg Am. 2005;30(5):986–9.
  88. Hattori Y, Doi K. Vascularized ulnar nerve graft. Techniques in hand & upper extremity surgery. 2006. p. 103–6.
  89. Terzis JK, Kostopoulos VK. Vascularized ulnar nerve graft: 151 reconstructions for posttraumatic brachial plexus palsy. Plast Reconstr Surg. 2009;123(4):1276–91.
  90. Risitano G, Alcontres FSD. Ulnar nerve repair by end-to-side neurorrhaphy on the median nerve with interposition of a vein : an experimental study. 2007.
  91. Lavasani M, Gehrmann S, Gharaibeh B, Clark KA, Kaufmann RA, Pault B, et al. Venous graft-derived cells participate in peripheral nerve regeneration. PLoS One. 2011;6(9).
  92. Mohammadi R, Mehrtash M, Nikonam N, Mehrtash M, Amini K. Ketoprofen combined with artery graft entubulization improves functional recovery of transected peripheral nerves. Journal of Cranio-Maxillofacial Surgery. 2013;
  93. Bertelli JA, Taleb M, Mira J-C, Ghizoni MF. The course of aberrant reinnervation following nerve repair with fresh or denatured muscle autografts. J Peripher Nerv Syst. 2005;10(4):359–68.
  94. Robla Costales J, Dominguez Páez J, Bustamante J, Socolovsky M. Técnicas Modernas en Microcirugía de los Nervios Periféricos. Journal Ed. 2014.
  95. Clark WL, Trumble TE, Swiontkowski MF, Tencer AF. Nerve tension and blood flow in a rat model of immediate and delayed repairs. J Hand Surg Am. 1992;17(4):677–87.
  96. Vazquez-Jimenez JF, Sachweh JS, Seipelt R, Seghaye MC, Messmer BJ. Aortopexy reduces anastomosis stress after repair of coarctation. Ann Thorac Surg. 2001;72(1):294–5.
]]>
Trabajo Premio Senior Neuropinamar 2015]]> RESUMEN
Objetivo: Describir la anatomía microquirúrgica y los abordajes a la región temporal mesial (RTM), en relación a cavernomas de dicho sector
Material y Método: Cinco cabezas de cadáveres adultos, fijadas en formol e inyectadas con silicona coloreada, fueron estudiadas. Además, desde enero de 2007 a junio de 2014, 7 pacientes con cavernomas localizados en la RTM fueron operados por el autor.
Resultados: Anatomía: la RTM fue dividida en 3 sectores: anterior, medio y posterior. Pacientes: 7 enfermos con cavernomas de la RTM fueron operados por el autor. De acuerdo a la ubicación en la RTM, 4 cavernomas se ubicaron en el sector anterior, 2 cavernomas se localizaron en el sector medio y 1 cavernoma se ubicó en el sector posterior. Para el sector anterior de la RTM se utilizó un abordaje transsilviano-transinsular; para el sector medio de la RTM se utilizó un abordaje transtemporal (lobectomía temporal anterior); y para el sector posterior de la RTM se utilizó un abordaje supracerebeloso-transtentorial.
Conclusión: Dividir la RTM en 3 sectores nos permite adecuar el abordaje en función a la localización de la lesión. Así, el sector anterior es bien abordable a través de la fisura silviana; el sector medio a través de una vía transtemporal; y el sector posterior por un abordaje supracerebeloso.

Palabras clave: Abordaje; Anatomía; Cavernoma; Cuerno Temporal; Lóbulo Temporal

ABSTRACT
Objective: To describe the microsurgical anatomy and approaches to the mesial temporal region (MTR), in relation with cavernomas.
Material and Method: Five adult cadaveric heads, fixed in formol and injected with colored silicon were studied. Since January 2007 and June 2014, the author operated 7 patients with cavernomas located in the MTR.
Results: Anatomy: the MTR was divided in 3 portions: anterior, middle and posterior. Patients: the author operated 7 patients with MTR cavernomas. Four cavernomas were located in the anterior portion, 2 were located in the middle portion, and 1 cavernoma was located in the posterior portion. The transsylvian-transinsular approach was used for the anterior portion of the MTR; the transtemporal approach (anterior temporal lobectomy) was used for the middle portion of the MTR; and the supracerebellar-transtentorial approach was used for the posterior portion of the MTR.
Conclusion: The idea of divide the MTR in 3 portions help to select the correct approach.

Key words: Anatomy; Approach; Cavernoma; Temporal Horn; Temporal Lobe

]]>
  • Awad IA, Robinson JR (1993) Cavernous malformations and epilepsy. In: Awad IA, Barrow DL (eds) Cavernous malformation. American Association of Neurological Surgeons, Park Ridge, Illinois.
  • Campero A, Tróccoli G, Martins C, Fernandez Miranda JC, Yasuda A, Rhoton AL: Microsurgical approaches to the medial temporal region: an anatomical study. Neurosurgery 2006; 56:ons279-ons308.
  • Campero A, Ajler P, Emmerich J. En Campero A, Ajler P, Emmerich J (eds). Abordajes Neuroquirúrgicos al Cerebro y la Base de Cráneo. Buenos Aires, Ediciones Journal, 2013, pp 1-158.
  • de Oliveira EP, Siqueira M, Ono M, Tedeschi H, Peace D: Arteriovenous malformations of the mediobasal temporal region. Proceedings of The Japanese Congress of Neurological Surgeons, Chiba, Japan, 1991. Neurosurgeons 1992; 11:349–58.
  • de Oliveira EP, Tedeschi H, Siqueira MG, Ono M, Rhoton AL Jr, Peace D: Anatomic principles of cerebrovascular surgery for arteriovenous malformations. Clin Neurosurg 1994; 41:364–80.
  • de Oliveira JG, Párraga RG, Chaddad-Neto F, Ribas GC, de Oliveira EPL: Supracerebellar transtentorial approach – resection of the tentorium instead of an opening – to provide broad exposure of the mediobasal temporal lobe: anatomical aspects and surgical aplications. J Neurosurg 2012; 116:764-72.
  • Kivelev J, Niemela N, Blomstedt G, Roivainen R, Lehecka M, Hernesniemi J: Microsurgical treatment of temporal lobe cavernomas. Acta Neurochir 2011; 153:261-70.
  • Moran NF, Fish DR, Kitchen N, Shorvon S, Kendall BE, Stevens JM: Supratentorial cavernous haemangiomas and epilepsy: a review of the literature and case series. J Neurol Neurosurg Psychiatry 1999; 66:561-8.
  • Rubino P, Rhoton AL Jr, Tong X, de Oliveira EP: Three-dimensional relationships of the optic radiations. Neurosurgery 2005; 57(Suppl 4):219-27.
  • Sincoff EH, Tan Y, Abdulrauf SI: White matter fiber dissection f the optic radiations of the temporal lobe and implications for surgical approaches to the temporal horn. J Neurosurg 2004; 101:725-38.
  • Spencer DD: Anteromedial temporal lobectomy: directing the surgical approach to the pathologic substrate. En Spencer SS,
  • Spencer DD (eds): Surgery for Epilepsy. Boston, Blackwell Scientific Publications, 1991, pp 129-37.
    Spencer DD, Spencer SS, Mattson RH, Williamson PD, Novelly RA: Access to the posterior medial temporal lobe structures in the surgical treatment of temporal lobe epilepsy. Neurosurgery 1984; 15:667-71.
  • Tedeschi H, de Oliveira EP, Rhoton AL Jr, Wen HT: Microsurgical anatomy of arteriovenous malformations, in Jafar JJ, Awad IA, Rosenwasser RH (eds): Vascular Malformations of the Central Nervous System. Philadelphia, Lippincott, Williams & Wilkins, 1999, pp 243–259.
  • Ture U, Harput MV, Kaya AH, Baimedi P, Zeynep F, Ture H, Bingol CA: The paramedian supracerebellar-transtentorial approach to the entire length of the mediobasal temporal region: an anatomical and clinical study. J Neurosurg 2012; 116:773-791.
  • Voigt K, Yasargil MG: Cerebral cavernous hemangiomas or cavernomas: incidence, pathology, localization, diagnosis, clinical features and treatment. Review of the literature and report of an unusual case. Neurochirurgia (Stuttg) 1976; 19:59-68.
  • Yasargil MG, Teddy PJ, Roth P: Selective amygdalo-hippocampectomy. Operative anatomy and surgical technique. Adv Tach Stand Neurosurg 1985; 12:93-123.supracerebeloso.
  • ]]>